LeetCode二叉树
103. Binary Tree Zigzag Level Order Traversal「BFS」
Binary Tree Zigzag Level Order Traversal
之字形遍历二叉树。
仍然采用普通的队列,只是对于奇偶层,在保存改层结果时改变顺序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
public static class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> res = new LinkedList<>();
if (root == null) return res;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()){
List<Integer> level = new LinkedList<>();
int cnt = queue.size();
for (int i=1; i<=cnt; i++){
TreeNode tmp = queue.poll();
if (res.size() % 2 == 0){
level.add( tmp.val);
}else
level.add(0, tmp.val);
if(tmp.left!=null)
queue.offer(tmp.left);
if(tmp.right!=null)
queue.offer(tmp.right);
}
res.add(level);
}
return res;
}
|
106. Construct Binary Tree from Inorder and Postorder Traversal「重建二叉树」
Construct Binary Tree from Inorder and Postorder Traversal
根据中序和后序build二叉树
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
public static class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
private HashMap<Integer, Integer> map = new HashMap<>();//record inorder val to index
public TreeNode buildTree(int[] inorder, int[] postorder) {
for (int index = 0; index<inorder.length; index++)
map.put(inorder[index], index);
return build(inorder, 0, inorder.length - 1, postorder, 0, postorder.length - 1);
}
public TreeNode build(int[] inorder, int in_start, int in_end, int[] postoder, int post_start, int post_end) {
if (in_start > in_end || post_start > post_end)
return null;
TreeNode root = new TreeNode(postoder[post_end]);
int i = map.get(root.val);
root.left = build(inorder, in_start, i - 1, postoder, post_start, post_start + i - in_start - 1);
root.right = build(inorder, i + 1, in_end, postoder, post_start+i-in_start, post_end - 1);
return root;
}
|
108. Convert Sorted Array to Binary Search Tree
Convert Sorted Array to Binary Search Tree
给定一个有序数组,将其重建成BST树。答案不唯一,输出一个即可
采用二分查找的思想,每次用子数组的中间结点作为根。这样自带平衡属性,又因为数组有序,所以也满足BST树的要求。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
static public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
public TreeNode sortedArrayToBST(int[] nums) {
return DFS(nums, 0, nums.length-1);
}
public TreeNode DFS(int[] nums, int start, int end)
{
if (start > end)
return null;
int mid = start + (end - start) / 2;
TreeNode root = new TreeNode(nums[mid]);
root.left = DFS(nums, start, mid-1);
root.right = DFS(nums, mid+1, end);
return root;
}
|
109. Convert Sorted List to Binary Search Tree[重建BST树]
Convert Sorted List to Binary Search Tree
给定一个有序链表,将其重建成BST树。答案不唯一,输出一个即可
和上一题同样的思路,关键在于找到链表的中点,这里采用了两个指针的策略,前闭后开。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
static public class ListNode {
int val;
ListNode next;
ListNode(int x) {
val = x;
}
}
static public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
public TreeNode sortedListToBST(ListNode head) {
if (head == null)
return null;
return DFS(head, null);
}
public TreeNode DFS(ListNode start, ListNode end) {
if (start == end)
return null;
ListNode fast = start;
ListNode slow = start;
while (fast != end && fast.next != end) {
fast = fast.next.next;
slow = slow.next;
}
TreeNode root = new TreeNode(slow.val);
root.left = DFS(start, slow);
root.right = DFS(slow.next, end);
return root;
}
|
110. Balanced Binary Tree「DFS」
Balanced Binary Tree
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the left and right subtrees of every node differ in height by no more than 1.
判断平衡二叉树的问题,显然最简单的方法就是复用求高度的方法,但是如果直接用这样的话,时间复杂度是$O(n^2)$。显然这是不够好的。
一直可能的优化是将判断逻辑放入求高度的过程中。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
static public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
private boolean isbalance = true;
public boolean isBalanced(TreeNode root) {
if (root==null)
return true;
if (Math.abs(getTreeHeight(root.left) - getTreeHeight(root.right)) > 1)
return false;
else
return isBalanced(root.left) && isBalanced(root.right);
}
public int getTreeHeight(TreeNode root)
{//未优化的版本
if (root==null)
return 0;
return Math.max(getTreeHeight(root.left), getTreeHeight(root.right)) + 1;
}
public boolean isBalanced2(TreeNode root)
{
getTreeHeight2(root);
return isbalance;
}
public int getTreeHeight2(TreeNode root)
{// 利用类变量isbalance标示
if (root==null)
return 0;
int left = getTreeHeight2(root.left);
int right = getTreeHeight2(root.right);
if (Math.abs(left - right) > 1)
isbalance = false;
return Math.max(left, right) + 1;
}
|
111. Minimum Depth of Binary Tree「DFS」
Minimum Depth of Binary Tree
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Note: A leaf is a node with no children.
1
2
3
4
5
6
7
8
9
10
11
|
public int minDepth(TreeNode root) {
if (root==null)
return 0;
int left = minDepth(root.left);
int right = minDepth(root.right);
if (left == 0 || right == 0) // 有一个子树为空的时候,不能用min的方式,否则可能这个结点不是叶子但是返回0了
return left + right + 1;
else
return Math.min(left, right) + 1;
}
|
112. Path Sum「DFS」
Path Sum
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.Note: A leaf is a node with no children.
1
2
3
4
5
6
7
8
9
10
11
|
public boolean hasPathSum(TreeNode root, int sum) {
if (root==null)
return false;
else
{
if (root.val == sum && root.left == null && root.right == null)
return true;
return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
}
}
|
113. Path Sum II「DFS」
Path Sum II
Given a binary tree and a sum, find all root-to-leaf paths where each path’s sum equals the given sum.Note: A leaf is a node with no children.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
static public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<List<Integer>> res = new LinkedList<>();
DFS(root, sum, new ArrayList<>(), res);
return res;
}
public void DFS(TreeNode root, int sum, List<Integer> path, List<List<Integer>> result)
{
if (root == null)
return;
path.add(root.val);
if (root.val == sum && root.left == null && root.right == null)
result.add(new ArrayList<>(path));
DFS(root.left, sum - root.val, path, result);
DFS(root.right, sum - root.val, path, result);
path.remove(path.size() - 1);
}
|
116. Populating Next Right Pointers in Each Node「层序遍历」
Populating Next Right Pointers in Each Node
给定一个完全二叉树,要求填写其中的next
指针。比如下图:
显然,这是一个层序遍历问题,但是不一定非要用队列。。因为完全二叉树,一直向左孩子前进即可进入下一层,同时对该层层序遍历填充next
域。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
static class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
public Node connect(Node root) {
if (root == null)
return root;
Node pre = root;// 一直向树的最左孩子遍历
Node cur = null;
while (pre.left != null)
{//进入下一层的循环
cur = pre;
while (cur!=null)
{// 通过next进行该层平移
cur.left.next = cur.right;
if (cur.next!=null)
{
cur.right.next = cur.next.left;
}
cur = cur.next;
}
pre = pre.left;
}
return root;
}
|
117. Populating Next Right Pointers in Each Node II「层序遍历」
Populating Next Right Pointers in Each Node II
同上一题,只不过不保证是个完全二叉树。
显然,需要检查子树的存在性。之前的每次由左子树进入下一层的方法不再适用。考虑使用层序遍历,但是不算使用队列,因为目的是链接,因此更像是链表的操作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
public Node connect(Node root) {
Node res = root;
Node dummy = new Node(0);
while (root != null)
{//树的层序遍历
Node cur = dummy; // 用一个临时结点,作为每一层"链表"的头结点。
while (root != null)
{//遍历该层
if (root.left != null)
{
cur.next = root.left;
cur = cur.next;
}
if (root.right != null)
{
cur.next = root.right;
cur = cur.next;
}
root = root.next;
}
root = dummy.next;
dummy.next = null;
}
return res;
}
|