LeetCode回溯
77. Combinations
Combinations
Given two integers n and k, return all possible combinations of k numbers out of 1 … n.
回溯即可:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> ans = new ArrayList<>();
List<Integer> path = new LinkedList<>();
DFS(ans, path, 1, n, k);
return ans;
}
static public void DFS(List<List<Integer>> ans, List<Integer> path, int start, int n, int k)
{
if(k==0)
{
ans.add(new ArrayList<>(path));
return;
}
for(int i = start; i<=n-k+1; i++) // 这里,start最大值是n-(k-1),此时到n才能满足k个数的要求
{
path.add(i);
DFS(ans, path, i+1, n, k-1);
path.remove(path.size()-1);
}
}
|
93. Restore IP Addresses[DFS]
Restore IP Addresses
给定一个数字的字符串,返回其可能代表的所有IP地址。
注意,这里使用DFS的时候不是先push再pop的形式,但是本质上是一样的。都是不断尝试的过程。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
public List<String> restoreIpAddresses(String s) {
List<String> res = new ArrayList<>();
DFS(res, s, 0, "", 0);
return res;
}
private void DFS(List<String> res, String raw, int index, String tmp, int count) {
if (count > 4)
return;
if (count == 4 && index == raw.length()) {
res.add(tmp);
}
for (int i = 1; i <= 3; i++) {
if (index + i > raw.length())
break;
String s = raw.substring(index, index + i);
if (s.startsWith("0") && s.length() > 1 || s.length() == 3 && Integer.parseInt(s) > 255)
continue;
DFS(res, raw, index + i, tmp + s + (count == 3 ? "" : "."), count + 1);
}
}
|
130. Surrounded Regions「DFS」
Surrounded Regions
简单描述为,将不在边上的O填成X,类似于围棋。与边界O相邻的如果也是O,也不能被替换。
可以对“棋盘”的边上的每个O
开始DFS,填充相邻的O
为1
,然后将整个矩阵所有的O
填成X
,再把1
还原成O
。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
public void solve(char[][] board) {
if(board.length == 0)
return;
int m = board.length, n = board[0].length;
for (int i = 0; i<m; i++)
{
if(board[i][0] == 'O')
DFS(board, i, 0);
if(board[i][n-1] == 'O')
DFS(board, i, n-1);
}
for(int j = 0;j <n;j++)
{
if(board[0][j]=='O')
DFS(board, 0, j);
if(board[m-1][j]=='O')
DFS(board, m-1, j);
}
for (int i = 0; i<m; i++)
{
for(int j = 0;j<n; j++)
{
if(board[i][j]=='O')
board[i][j] = 'X';
}
}
for (int i = 0; i<m; i++)
{
for(int j = 0;j<n; j++)
{
if(board[i][j]=='1')
board[i][j] = 'O';
}
}
}
void DFS(char[][] board, int i, int j) {
if (board[i][j] == 'O')
board[i][j] = '1';
if (i + 1 < board.length && board[i + 1][j] == 'O')
DFS(board, i + 1, j);
if (i - 1 >= 0 && board[i - 1][j] == 'O')
DFS(board, i - 1, j);
if (j + 1 < board[0].length && board[i][j + 1] == 'O')
DFS(board, i, j + 1);
if (j - 1 >= 0 && board[i][j - 1] == 'O')
DFS(board, i, j - 1);
}
|
131. Palindrome Partitioning「回溯」
Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
采用求子集相同的代码思路,只不过把回文考虑进去。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
public List<List<String>> partition(String s) {
List<String> path = new ArrayList<>();
List<List<String>> res = new ArrayList<>();
DFS(s, 0, path, res);
return res;
}
void DFS(String s , int pos, List<String> path, List<List<String>> res)
{
if(pos==s.length())
{
res.add(new ArrayList<>(path));
}
for(int i = pos; i<s.length(); i++)
{
if(isPalindrome(s, pos, i))
{
path.add(s.substring(pos, i+1));
DFS(s, i+1, path, res);
path.remove(path.size() -1 );
}
}
}
public boolean isPalindrome(String s, int start, int end)
{
while (start < end)
if (s.charAt(start++) != s.charAt(end--))
return false;
return true;
}
|